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A self-consistent scheme is given for the calculation of the contributions of non- 
spherical molecular interactions to second virial coefficients. The usual long- 
range nonspherical interactions, which are asymptotically valid only at large 
separations, are modified by damping functions that render them valid at small 
separations as well. Numerical tables of new auxiliary functions J~(T*) a r e  

given for 6 4 n ~< 30 and 0.5 ~< T*~< 10. These are designed to be used in the 
identical statistical-mechanical formalism for the second virial coefficient that 
had been developed for the undamped long-range nonspherical interactions. 
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second virial coefficients. 

1. I N T R O D U C T I O N  

A s t a n d a r d  m e t h o d  for the ca lcula t ion  of the second virial coefficients of 
nonspher ica l  molecules  is the pe r t u rba t i on  scheme developed  by Pople  and  
Buck ingham [1, 2] ,  in which the in te rmolecu la r  po ten t ia l  is represented  as 
a spher ical ly  symmetr ic  core plus terms for the long-range  nonspher ica l  
in teract ions ,  such as d ipo le  dipole,  d ispers ion  an iso t ropy ,  etc. The non-  
spher ical  terms are  then t rea ted  as per turba t ions ,  and  the stat ist ical-  
mechanica l  express ion for the second virial  coefficient is expanded  
accord ing ly  to p roduce  an  express ion that  gives correc t ions  to the spherical  
con t r ibu t ion  in the form of  series tha t  converge rapid ly  for high 
temperatures .  The coefficients of the series are  integrals  that  are functions 
of  t empera ture ,  which are usual ly  eva lua ted  numer ica l ly  and  t abu la t ed  
[14-1. 

* Department of Chemistry, Shiraz University, Shiraz, Iran. 
2 Division of Engineering, Brown University, Providence, Rhode Island 02912, U.S.A. 

5O3 

0195-928X/90/0500-0503506.00/0 �9 1990 Plenum Publishing Corporation 
840/I 1/3-4 



504 Absardi, Boushehri, and Mason 

A weak point in the foregoing development is the form usually 
assumed for the long-range nonspherical terms in the potential. These 
terms are given by various inverse powers of the intermolecular separation, 
a form which is valid only asympotically for large separations but which is, 
nevertheless, kept in the subsequent integrations even down to r = 0 .  
Physically, the magnitude of the long-range terms should be decreased as 
r is decreased, in order to account for electron overlap and exchange. Thus 
in a sense the results are inconsistent: the formulas are convergent for high 
temperatures, but it is at high temperatures that effects occurring at small 
intermolecular separations might be expected to be most important. 

This difficulty was recognized quite early by Castle et al. [-5], who 
carried out exploratory calculations using a Lennard-Jones (12, 6) spheri- 
cal-core potential with a number of added nonspherical interaction terms. 
In the absence at that time of any information on the quantitative nature 
of the damping of the long-range terms as r decreased, they used a simple 
cutoff at r =  ao, the separation at which the spherical potential is zero. 
They found that the coefficients of the series expression were reduced by 
roughly 20% at k T / e o -  T* = 1 and by roughly a factor of 2 at T* = 10, 
where e0 is the depth of the spherical potential well. These apparently 
rather large changes appeared as only relatively small effects on the total 
second virial coefficient, however, since the nonspherical contributions 
amounted to less than 6% at T * =  1 and less than 1% at T * =  10. Thus 
the overall effect of cutting off the asymptotic long-range nonspherical 
potentials was small but not negligible. 

Since that time the nature of the damping of the long-range terms has 
been greatly clarified, and multiplicative damping functions have been 
developed that convert the asymptotic formulas valid at large r into ones 
valid at all r. Such damping functions by now have a fairly elaborate 
history, which has been reviewed by Tang and Toennies [6] and does not 
need to be repeated here. 

The purpose of this paper is to use these damping functions to 
produce a self-consistent calculation of the second virial coefficients of non- 
spherical molecules. The results have the same mathematical form as those 
obtained earlier with the undamped asymptotic long-range terms, but the 
functions that serve as coefficients in the high-temperature expression are 
now different. Our results are qualitatively similar to those of Castle et al., 
but the smooth damping functions produce a smaller effect on the final 
second virial coefficients than does the sharp cutoff. 

The fact that the effects of the damping functions on the second virial 
coefficients are small greatly simplifies the numerical calculations. A single 
damping function can thus be used for all the long-range terms, including 
those in the spherical potential. In principle, a somewhat different damping 



Virial Coefficients for Nonspherical Molecules 505 

function should be used for each long-range term [6],  but this refinement 
greatly increases the number of parameters and the numerical labor 
involved, without producing any apprecible change in the final second 
virial coefficients. In practice, we have used a damping function of the form 
recommended by Ahlrichs et al. [7],  

F(x) = exp I -  ( D - -  1)21, x < D  (la) 

F(x) = 1, x>~D ( lb)  

x = r / r  m (lc) 

where r m is the position of the minimum in the spherical potential, and D 
is the cutoff or damping parameter. Our final numerical tables were 
obtained with D = 1.28 and the HFD-I  spherical potential used by Aziz 
and Chen [8]. Some exploratory calculations were also made with a 
(12, 6) spherical potential and with D = 1.4. 

The final results are presented as a set of functions D , Jn ( T ), which 
serve as coefficients in the perturbation expansion for the second virial 
coefficient. These functions should be used for accurate work in preference 
to those presented earlier [1-4] ,  which did not include any damping func- 
tion. However, work of an essentially correlation nature does not need to 
be revised on this account, because the effects of the damping function are 
sufficiently small that they can be compensated by the adjustable quantities 
in a correlation [9, 10], such as the parameters ao and eo of the spherical 
potential. 

Finally, it should be mentioned that the functions D . Jn (T  ) can be 
regarded as essentially universal, although they do depend on both the 
damping function and the spherical potential. The reason is that the non- 
spherical effects on the second virial coefficient are sufficiently small at high 
temperatures that these dependences are almost always less than the 
experimental uncertainties involved. 

2. CALCULATIONS 

We write the intermolecular pair potential as the sum of a spherical 
potential Vo and a damped nonspherical portion Vns, 

V(r) = Vo(r)+ V,s" F(x)  (2) 

where F(x)  is given by Eq. (1). The nonspherical contributions contained 
in Vn~ are all of the form of r -n multiplied by a function of the relative 
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molecular orientation. The most important components of Vn~ are 
tabulated in Refs. 3 and 4 for the interaction of linear molecules, and there 
is no need to repeat all those formulas here. As an example, the quadrople- 
quadrupole interaction between two linear molecules is 

Vns(O~)) =30102 [ 1 - 5 c ~ - 5 c  2 -  15c~c~+2(4c,c2--SlSzC) 2] (3) 
4r 5 

where O1 and 02 are the two quadrupole moments, and c~, c2, s~, s2, and 
c are cosines and sines of the angles describing the relative orientation [3]. 

The perturbation expansion for the second virial coefficient, B(T), 
then leads to 

B(T) = ~ a3oEB*(T* ) + B*s(T*)] (4) 
. . 3  

where N A is Avogadro's number, B* is the (dimensionless) contribution 
from Vo(r), and Bn* is the (dimensionless) contribution due to Vn~. Expres- 
sions for the first few terms in each of the major contributions to B~* are 
given in Refs. 3 and 4 for like molecules and in Ref. 10 for unlike molecules. 
For example, the quadrupole-quadrupole contribution to the interaction 
second virial coefficient of two unlike molecules is 

6(o %2 

• Jf~ (otot  ' 1 \ ' ~ - "~ '~2  ,] O'15t 12f-~- ' ' '  (5)  

where O* 5 1/2 =Oil(goao)l: are dimensionless quadrupole moments and 
T*2 = kTl(~o)12 is a dimensionless temperature, The subscripts "12" refer to 
the interaction of species 1 and 2. 

The dimensionless integrals D , Jn ( T )  that appear in the expressions for 
the various contributions to Bn* are defined as 

3 l ov-' dx j~(T*)= n -  / ~ - /  Jo ~ F(x) exp(-  V~/T*) (6) 2 \rmJ 

where x=-r/rm and V*(x) =- Vo/e o. The only difference between these 
J~(T*) and the J,(T*) previously tabulated [3, 4] is the presence of F(x) 
in the integrand. (Notice that the distance scale parameter used for making 
B and J~ dimensionless is ao and not rm. ) The form chosen for V 0 was the 
HFD-I potential used by Aziz and Chen [8] in connection with argon, 

V,(x)= VO=Ae_~_(C6 C_~ Cm~ --~ --x-g + + --~ j Fo( x ) (7) 
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where Fo(x ) is the same as the F(x) of Eq. (1) except that its parameter  D O 
does not have to be the same as the D in F(x). Although this form was 
originally used specifically for Ar-Ar  interactions, it should be regarded 
here as simply a realistic general model for Vo; we are adopting only its 
shape, and the scale parameters ~0 and 6o (or rm) remain arbitrary. The 
dimensionless parameters of the dimensionless V*(x) have the following 
values: 

A = 7.783990 x 105 

~=13.722590 

C 6 = 1.213008 

C8 = 0.509989 

Clo = 0.280887 

Do = 1.28 

rm/~ 0 = 1.121799 

(8) 

Values of J~(T*) were calculated by numerical integration and are given 
in Table AI for 0.5 ~< T* ~< 10 and 6 ~< n ~ 30. Experience with similar 
previous calculations [-3, 4] leads us to believe that the accuracy of the 
tabulated values is not worse than about 1 part  in 104. 

The values of the spherical contribution B~(T*) can come from any 
accurate source, since the B*s(T*) are insensitive to the choice of Vo(r) 
[-3, 4]. For  convenience (and possible consistency), however, values of 
B*(T*) corresponding to the V* of Eq. (7) are tabulated in Ref. 4 for the 
range 0.30 ~< T* <~ 30. 

3. RESULTS AND D I S C U S S I O N  

The effects of cutoff and damping on the nonspherical contributions 
are illustrated in Fig. 1 for the typical case of n = 8. The ratio J~/J8 is 
shown as a function of T* for a (12, 6) spherical potential, with D = 1.28, 
D = 1.4, and the sharp cutoff at ao used by Castle et al. As expected, the 
effects of damping and cutoff (deviation of the ratio from unity) increase 
with increasing T*. However, this effect is compensated by the decrease in 
the nonspherical contributions themselves as T* increases. The sharp cutoff 
has a markedly stronger effect than the smooth damping. 

The results of damping for several values of n are shown in Fig. 2 for 
the more realistic case of the H F D - I  spherical potential with D o = D = 1.28. 
The effect of damping increases with increasing n. 
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Fig. 1. Effect of damping and cutoff for the typical case of n = 8, 
with the spherical-core potential represented by a (12, 6) model. 
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Fig. 2. Effect of damping for several values of n, with the spheri- 
cal-core potential represented by an HFD-I model. 
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Table I. Example of the Effect of Damping on the Calculated Nonspherical Contributions 
to Second Virial Coefficients (COg) 

Contribution 

T * = I  T * = 5  

Undamped  Damped Undamped Damped 

B*~(O0) 0.6339 --0.5760 --0.0243 0.0206 
B*s(O , ind #) -0 .0006  0.0005 -0.00003 -0.00003 
B*s(C 6 anis) -0 ,0689 -0 .0616 -0 .0029 -0 ,0023 
B*~(O0 x C6 anis) +0.1485 +0.1339 +0.0057 +0,0047 
B*~(O, ind # x C 6 anis) -0 .0100  --0.0088 -0 .0005 -0 ,0004  
B*s(total ) 0.5649 --0.5t30 -0 .0220 -0 ,0186 
B* (spherical) - 2,0716 + 0.3126 

a O* = 0.8473; x = 0.2664; c~ff = 0.0491; C~' = 2.328. 

The effects of the damping on the various nonspherical contributions 
are illustrated in Table I for CO2 at reduced temperatures T* = 1 and 5, as 
calculated with the tables in Ref. 4 and the present tables. Damping reduces 
the total B* s by roughly 10-15%, but the overall effect on the full B* is 
only about 1-2%, because of the dominant contribution of the spherical 
term, B~. Thus the overall effects of damping are small but not negligible. 
They should be included in accurate work but can be ignored if only rough 
estimates are needed. The convergence of the perturbation expansion for 
the nonspherical contributions deteriorates for T*<  1, and the relative 
contributions themselves diminish rapidly for T*> 5. 

The present tables are designed to be used in exactly the same way as 
the tables in Refs. 3 and 4 for the undamped nonspherical potentials. The 
only difference is that the present damped functions J~(T*) replace the 
previous undamped functions J , (T* )  in the formulas. 

A P P E N D I X  

Table AI. The Functions J~(T*) for Damped Nonspherical Contributions 
(D - 1.28); the Core Potential is HFD-I  

r* Jg s~ s~ J~ sI~0 

0.5 1.6771 1.8512 1.9669 2.0408 2.0842 
0.6 1.3307 1.4524 1.5338 1.5865 1.6188 
0.7 1.1376 1.2310 1.2942 1.3361 1.3630 
0.8 1.0168 1.0932 1.1456 1.1814 1.2055 
0.9 0.9352 1.0004 1.0460 1.0782 1.1010 
1.0 0.8770 0.9345 0.9756 1.0055 1.0279 
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Table AI. (Continued) 

T* Jg J~' J~ Jg J~o 

1.2 0.8004 0.8485 0.8844 0.9123 0.9349 
1.4 0.7534 0.7962 0.8296 0.8571 0.8809 
1.6 0.7221 0.7619 0.7944 0.8224 0.8478 
1.8 0.7004 0.7385 0.7707 0,7997 0.8270 
2.0 0,6846 0.7218 0.7544 0.7846 0.8140 

2.5 0.6607 0.6976 0.7321 0.7662 0.8010 
3.0 0.6485 0.6866 0.7239 0.7622 0.8025 
3.5 0.6423 0.6822 0.7227 0.7653 0.8112 
4.0 0.6394 0.6814 0.7252 0.7722 0.8236 
4.5 0.6385 0.6829 0.7300 0.7813 0.8381 
5.0 0.6389 0.6857 0.7361 0.7917 0.8539 

6.0 0.6420 0.6935 0.7505 0.8144 0.8870 
7.0 0.6466 0.7028 0.7661 0.8382 0.9209 
8.0 0.6520 0.7128 0.7821 0.8620 0.9545 
9.0 0.6577 0.7228 0.7980 0.8854 0.9876 

10.0 0.6634 0.7329 0.8137 0.9084 1.0199 

T* JD 1 J~2 J~3 J~4 J~5 

0.5 2.1056 2.1110 2.1048 2.0904 2.0703 
0.6 1.6363 1.6433 1.6428 1.6372 1.6280 
0.7 1.3792 1.3879 1.3914 1.3914 1.3892 
0.8 1.2216 1.2320 1.2387 1.2430 1.2458 
0.9 1.1175 1.1297 1.1391 1.1469 1.1538 
1.0 1.0451 1.0590 1.0710 1.0818 1.0922 

1.2 0.9542 0.9716 0.9880 1.0043 1.0210 
1.4 0.9026 0.9234 0.9441 0.9653 0.9876 
1.6 0.8721 0.8963 0.9210 0.9469 0.9746 
1.8 0.8540 0.8815 0.9102 0.9407 0.9735 
2.0 0.8437 0.8745 0.9072 0 .9422 0.9801 

2.5 0.8375 0.8766 0.9189 0.9650 1.0157 
3.0 0.8459 0.8931 0.9450 1.0022 1.0657 
3.5 0.8613 0.9166 0.9780 1.0464 1.1229 
4.0 0.8804 0.9437 1.0146 1.0943 1.1840 
4.5 0.9016 0.9728 1.0532 1.1442 1.2473 
5.0 0.9238 1.0030 1.0929 1.1952 1.3120 

6.0 0.9698 1.0646 1.1735 1.2989 1.4436 
7.0 1.0162 1.1265 1.2545 1.4032 1.5765 
8.0 1.0622 1.1879 1.3348 1.5072 1.7098 
9.0 1.1074 1.2482 1.4143 1.6105 1.8430 

10.0 1.1516 1.3075 1.4927 1.7130 1.9760 
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Table AI. (Contmue~ 

0.5 2.0463 2.0198 1.9920 1.9636 1.9352 
0.6 1.6166 t,6038 1.6905 1.5770 1.5640 
0,7 1.3856 1.3813 1.3770 1.3729 1.3695 
0.8 1.2479 1.2498 1.2520 1.2548 1.2585 
0.9 1.1604 1.1673 1.1748 1.1832 1.1927 
1.0 1.1028 1.1140 t.1261 1.1394 1.t541 

1.2 1,0385 1.0572 1.0774 1.0994 1.1234 
1.4 1.0114 1.0369 1.0646 1.0948 1.1276 
1.6 1.0043 1,0364 1.0714 1.1095 1,1510 
1.8 1.0090 1.0477 1.0898 1.1359 1.1864 
2.0 1.0214 1.0665 1.1159 1.1701 1.2297 

2.5 1.0715 1,1330 1.2011 1.2764 1.3599 
3.0 1.1363 1.2149 1,3024 1.4002 1.5095 
3.5 1.2086 1.3048 1.4129 1.5346 1.6717 
4.0 1.2853 !.3997 1.5293 1.6763 1.8432 
4.5 1.3645 1.4979 1.6500 1.8236 2.0222 
5.0 1.4456 1,5985 1.7739 1.9755 2.2077 

6.0 1.6109 1.8046 2.0294 2.2909 2.5956 
7.0 1.7788 2.0155 2.2931 2.6193 3.0036 
8.0 1.9484 2.2301 2.5636 2,9592 3.4297 
9.0 2.1191 2.4477 2.8400 3.3095 3.8726 

10.0 2.2906 2.6679 3.1219 3.6694 4.3316 

r* Jr1 J~ J~3 J~~ Jfs 

0.5 1,9073 1.8803 1.8543 1.8297 1.8066 
0.6 1.5516 1.5401 1.5297 1.5206 1.5128 
0.7 1.3669 1.3654 1,3651 1.3661 1,3685 
0.8 1.2632 1.2692 1.2766 1.2855 1.2960 
0.9 1.2036 1.2159 1.2299 1.2456 1.2632 
1.0 1.1704 1.1884 1.2084 1.2304 1.2547 

1.2 1.1497 1.1783 1.2097 1.2439 1.2812 
1.4 1.1634 1.2025 1.2451 1.2915 1.3422 
1,6 1.1965 1.2461 1.3003 1,3596 1.4243 
1.8 1.2416 1.3022 1.3686 1,4414 1.5212 
2.0 1.2951 1.3671 1.4462 1,5333 1.6293 

2.5 1.4524 1.5552 1.6693 1.7962 1.9374 
3.0 1.6319 1.7689 1.9225 2.0950 2.2890 
3.5 1,8265 2.0013 2.1991 2.4232 2.6775 
4.0 2.0330 2,2492 2.4958 2.7775 3.0999 
4.5 2.2497 2.5107 2.8107 3.1562 3.5547 
5.0 2.4754 2.7848 3.1429 3.5582 4.0407 
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Table AI. (Continued) 

6.0 2.9513 3.3676 3.8557 4.4291 5.1043 
7.0 3.4571 3.9938 4.6301 5.3866 6.2877 
8.0 3.9905 4.6608 5.4638 6.4283 7.5894 
9.0 4.5501 5.3671 6.3550 7.5527 9.0085 

10.0 5.1347 6.1113 7.3024 8.7589 10.5448 

r* Jr6 Jr7 J~8 J~9 J3~o 

0.5 1.7849 1.7649 1.7466 1.7300 1.7151 
0.6 1.5064 1.5015 1.4981 1.4963 1.4961 
0.7 1.3724 1.3779 1.3850 1.3939 1.4045 
0.8 1.3082 1.3222 1.3381 1.3560 1.3760 
0.9 1.2828 1.3045 1.3285 1.3549 1.3838 
1.0 1.2813 1.3105 1.3424 1.3772 1.4150 

1.2 1.3218 1.3660 1,4141 1.4663 1.5230 
1.4 1.3974 1.4575 1,5230 1.5943 1.6720 
1.6 1.4951 1.5725 1.6571 1.7496 1.8508 
1.8 1.6088 1.7049 1.8105 1.9266 2.0541 
2.0 1.7351 1.8516 1.9803 2.1223 2.2793 

2.5 2.0984 2.2702 2.4661 2.6849 2.9298 
3.0 2.5072 2.7532 3.0308 3.3444 3.6993 
3.5 2.9664 3.2951 3.6698 4.0975 4.5863 
4.0 3.4695 3.8938 4.3817 4.9438 5.5924 
4.5 4.0151 4.5481 5.1662 5.8842 6.7200 
5.0 4.6025 5.2578 6.0235 6.9202 7.9721 

6.0 5.9011 6.8432 7.9597 9.2854 10.8631 
7.0 7.3638 8.6518 10.1968 12.0543 14.2927 
8.0 8.9908 10.6863 12.7426 15.2424 18.2887 
9.0 10.7827 12.9502 15.6052 18.8655 22.8789 

1 0 . 0  12.7405 15.4473 18.7930 22.9392 28.0908 
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